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I. COOPERATION FREQUENCY ANALYSIS

In this section, we give the analysis of the cooperation
frequency of each optimization model. First, a measurement
of cooperation frequency is designed based on the round-robin
(RR) structure. Then, the experimental results are given to
show the difference among the CC optimization models.

Since conceptually RR has the largest cooperation fre-
quency, we use RR as the reference to calculate other models’
cooperation frequencies. Given M optimizers corresponding
to M subcomponents of a n-dimensional problem, if an
optimizer needs to use N times of fitness evaluations (FEs)
in one generation, RR will totally use M · N FEs in one
generation to optimize all n variables. Defining each M · N
FEs as a period, for a specific CC model, we will check how
many variables are optimized in every period. Suppose within
a period, n∗ variables are optimized, then, in this period, the
cooperation frequency of this model is calculated as n∗/n.
Since the problem is decomposed into subcomponents in CC
methods, more variables being optimized in a period means
more optimizers having cooperated in this period.

Since most evolutionary algorithms are iterative algorithms,
the period would shift along with the optimization process
which means that the cooperation frequency defined here is a
dynamic value instead of a static value. Assuming that each
subcomponent has the same number of variables, i.e. n/M ,
the lower bound and the upper bound of each CC model’s
cooperation frequency can be easily calculated as shown in
Table A, including RR, CBCC1, CCFR, DCC, and CBO.

TABLE A
LOWER BOUND AND UPPER BOUND OF COOPERATION FREQUENCY

Model Lower Upper
RR 1 1

CBCC1 (M − 1)/M 1
CCFR 1/M 2/M
DCC 1/M 1
CBO 1/2 1

Taking two functions with uniform subcomponent sizes
f3 and f4 as representatives, the cooperation frequency is
calculated for each CC model that is shown in Fig. A.

Basically, the results shown in these two figures are in
accordance with our analysis. The cooperation frequency of
CBO is slightly lower than CBCC1 since it rewards more
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Fig. A. Cooperation frequency of CBCC1, CCFR, DCC, and CBO. (a) f3,
(b) f4.

subcomponents than CBCC1. The cooperation frequencies of
CBO and CBCC1 are both much higher than DCC and CCFR.
CCFR has the lowest cooperation frequency that is the main
reason why its performance is not good.

Considering both the experiment here and the experiments
in the main paper, one of the basic assertions of this paper
that both high cooperation frequency and efficient resource
allocation are important to optimizing overlapping problems
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is verified. RR and CBCC1 has higher cooperation frequency,
however, the resource allocation methods in these two models
are not efficient. CCFR has a good measurement of con-
tribution of subcomponents to allocate computing resources,
however, it does not have high cooperation frequency. Due
to the contribution accumulation, DCC does not have high
cooperation frequency either. CBO has found a good balance
between these two factors, thus, it is more effective than other
models on the large-scale overlapping problems.

From Fig. A, we can see the curve of the cooperation
frequency of CBO has some fluctuations in the final stage of
the optimization. The reason can be explained from Fig. D(d).
From Fig. D(d), we can know that CBO has already stopped
optimizing the problem from 106 FEs. Then, the contribution
of each subcomponent basically halves in every generation.
In the final stage, the contributions of many subcomponents
become zero or near zero. (It may become zero due to the
precision of the double floating number.) Then, in this stage,
the effect of historical information of the contribution can be
ignored. If an optimizer can make a slightly difference, it
will be awarded. Since the contribution made in this stage is
basically due to the randomness of the algorithm, the awarding
process is very unstable. That is the reason why there are some
fluctuations.

II. FULL FIGURE SETS

Mapping between the figures in the supplementary material
and the figures in the paper is shown as follows:

1) Fig. B is the full set of Fig. 6 (Convergence curves of
CSO, LLSO, SHADEILS, RDG3, DCC, FEA, CCAS and
CBCCO) of the paper. Basically, Fig. B verifies the analy-
ses we made in Section V.A of the paper (page 10). When
CMA-ES can effectively handle the subcomponents, i.e.
on f1−f8, CBCCO has the fastest convergence speed. On
conforming functions, it will maintain this speed from the
beginning to the end. On conflicting functions, CBCCO
and RDG3 usually can get similar final results but the
convergence speed of CBCCO is still faster. When CMA-
ES cannot handle the subcomponents, i.e. on f9 − f12,
all algorithms converge very early including CBCCO.

2) Fig. C is the full set of Fig. 7 (Convergence curves of
CBD-R, Greedy, and CBD) of the paper. The observations
can be gotten from Fig. C are similar to the analyses
that we have made in Section V.B (page 11). On all of
these figures, we can find that CBD is better than or at
least equivalent to the greedy decomposition. Both the
measurements of convergence speed and final objective
value show that CBD is more effective than the other
two decomposition methods. Even on f9 − f12 where all
algorithms are premature, CBD is still better.

3) Fig. D corresponds to the experiment in Section V.C
(Analysis of CBO) of the paper. Based on Fig. D, we
can find that CBO has the fastest convergence speed
compared with RR, CBCC1, and CCFR. The convergence
speed of CCFR is the slowest since it has abandoned the
RR structure which leads to a low cooperation frequency.
The fast convergence speed of CBO is due to its effective
resource allocation and the high cooperation frequency.
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Fig. B. Convergence curves of CSO, LLSO, SHADEILS, RDG3, DCC, FEA, CCAS and CBCCO. (a) f1, (b) f2, (c) f3, (d) f4, (e) f5, (f) f6, (g) f7, (h)
f8, (i) f9, (j) f10, (k) f11, (l) f12.
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Fig. C. Convergence curves of CBD-R, Greedy, and CBD. (a) f1, (b) f2, (c) f3, (d) f4, (e) f5, (f) f6, (g) f7, (h) f8, (i) f9, (j) f10, (k) f11, (l) f12.
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Fig. D. Convergence curves of RR, CBCC1, CCFR, and CBO. (a) f1, (b) f2, (c) f3, (d) f4, (e) f5, (f) f6, (g) f7, (h) f8, (i) f9, (j) f10, (k) f11, (l) f12.
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III. ALGORITHM COMPLEXITY

Since most evolutionary algorithms (EAs) are stochastic
algorithms, they usually requires a certain number of fitness
evaluations to converge. Thus, in general, the time complexity
of a conventional EA can be stated as O(N ·(X+Y )) where N
represents the number of fitness evaluations, O(X) represents
the time complexity to generate a solution, O(Y ) represents
the time complexity of evaluating a solution. In the research
field of evolutionary computation, a commonly adopted as-
sumption is that the complexity of evaluating a solution is
much higher than the operations to generate a solution such as
crossover and mutation, which means O(Y ) � O(X), and the
evaluation process is also independent of the used algorithm.
Thus, under the two assumptions, given the same number of
fitness evaluations as the stopping criterion, theoretically time
complexity of an evolutionary algorithm is O(NY ) where N
is the total number of fitness evaluations. This is the reason
that most competitions on continuous optimization problems
set the number of fitness evaluations as the stopping criterion.

However, if we ignore the assumptions, different algorithms
must have different time complexities to generate a solution.
For an EA that is not CC-based algorithm, the time complexity
comes from its own operations to generate a solution. For
a CCEA, it depends on the applied optimizer. In CBCCO,
we adopted CMA-ES as the optimizer. For a n-dimensional
problem, the time complexity to generate a solution of CMA-
ES is roughly O(n2), but in CBCCO, since the problem is
divided, the time complexity to generate a solution is lower.
Assume the n-dimensional problem is decomposed into M
subcomponents, then roughly the size of each subcomponent
ns = n/M . Then, the time complexity to generate one solution
in CBCCO is O(n2

s). Thus, the complete time complexity of
CBCCO is O(N ·(n2

s+Y )). Following the same way, we have
summarized the time complexities of all compared algorithms
in Table B. It should be notice that ns may change in DCC and
CCAS since the subcomponent size in these two algorithms is
controlled either by some parameters or the random grouping
method. For FEA, when it generate a sub-solution, the time
complexity is O(n2

s). However, when the complete context
vector is generated, each time only one value of one variable
is changed, thus the complexity is O(1). Since it requires a
large number of FEs to in the competition process, its time
complexity is in the between of O(N ·Y ) and O(N ·(n2

s+Y )).
Clearly, among the compared algorithms, DCC and CCAS
have the lowest time complexity. However, whether the time
complexities of RDG3 and CBCCO are higher than CSO,
LLSO and SHADEILS is uncertain. It also depends on the
number of subcomponents M , which is problem-dependent.
If n2

s is smaller than n, i.e. n
M2 < 1, the time complexities

of CBCCO and RDG3 are lower than CSO, LLSO, and
SHADEILS. Otherwise, the time complexities of CBCCO and
RDG3 are the highest.

Besides the theoretical analysis about the time complexity,
we have also recorded the execution time of each algorithm
on f1 and f2. Since SHADEILS is implemented in Python,
it is not compared in this experiment. 1 Other algorithms are

1The code of SHADEILS is provided by its author Molina.

TABLE B
TIME COMPLEXITY OF ALL THE COMPARED ALGORITHMS.

Methods Complexity
CSO, LLSO, SHADEILS O(N · (n+ Y ))
RDG3, CBCCO O(N · (n2

s + Y ))
DCC, CCAS O(N · (ns + Y ))
FEA (O(N · Y ),O(N · (n2

s + Y )))
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Fig. E. Execution time of CSO, LLSO, RDG3, DCC, FEA, CCAS, and
CBCCO. (a) f1, (b) f2.

implemented in C++. All algorithms run on the i7-9750H CPU
with basic frequency 2.60GHz but overlocked to 3.98GHz. The
results is shown in Fig. E in the form of histogram.

From Fig. E, we can find that there are three levels of the ex-
ecution time. CSO and LLSO are in the highest level that they
consumed more time than the other algorithms. RDG3 and
CBCCO are in the middle level since they both applied CMA-
ES as the optimizer and used the fixed grouping result. DCC,
FEA, and CCAS are in the lowest level that they consumed
less time than others. The reason that the time consumptions of
DCC and CCAS are low is that both algorithms use differential
evolution (DE) as their optimizers. The time complexity of
DE to generate a solution is essentially lower than CMA-ES.
The reason that FEA consumes little time is already explained
previously. If we take the benchmark functions as example,
actually the theoretical time complexity of CBCCO is larger
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TABLE C
COMPARISON OF THE BEST VALUE OF EACH ALGORITHM ON EACH FUNCTION AMONG THE 30 INDEPENDENT EXECUTIONS.

Func. CSO LLSO SHADEILS RDG3 DCC FEA CCAS CBCCO
f1 4.93E+08 5.38E+07 1.13E+05 9.62E+03 8.50E+08 1.93E+10 1.17E+09 7.77E+01
f2 1.28E+09 4.21E+07 6.43E+06 4.35E+06 4.26E+09 3.16E+11 4.46E+10 4.34E+06
f3 3.65E+08 8.66E+07 3.01E+04 6.14E-04 1.87E+09 3.27E+10 1.67E+09 1.89E-14
f4 3.40E+09 8.93E+07 4.55E+06 3.99E+06 3.70E+10 5.60E+11 3.89E+10 3.98E+06
f5 2.64E+11 1.03E+11 1.91E+10 8.72E+08 4.71E+11 6.15E+12 3.29E+11 2.05E+07
f6 2.40E+12 1.14E+12 1.13E+11 8.45E+08 5.43E+12 6.96E+13 3.15E+12 8.14E+08
f7 5.32E+11 3.08E+11 3.81E+10 4.00E+06 1.32E+12 1.26E+13 6.39E+11 4.45E+05
f8 8.33E+12 4.26E+12 2.91E+11 1.16E+11 2.85E+13 2.13E+14 8.19E+12 2.39E+08
f9 1.60E+06 2.49E+06 8.62E+06 7.70E+06 2.41E+07 6.75E+07 6.91E+06 7.16E+06
f10 4.33E+07 5.31E+07 9.87E+07 1.33E+08 5.39E+08 1.05E+09 1.33E+08 1.18E+08
f11 4.17E+06 5.47E+06 1.34E+07 1.35E+07 4.71E+07 1.25E+08 1.72E+07 1.49E+07
f12 6.90E+07 8.60E+07 1.95E+08 2.93E+08 7.85E+08 2.66E+09 3.47E+08 2.25E+08

than CSO since n
M2 > 1. The reason that CBCCO takes

less time than CSO is that generating a sub-solution with 50
variables by CMA-ES is faster than generating a solution with
1000 variables by CSO. The big ‘O’ notation only gives the
approximation behaviour of the algorithm that has ignored the
detailed operations of the algorithm. The comparison between
DCC, CCAS, and CBCCO shows that the time complexity of
a CCEA highly depends on the applied optimizer. In addition,
the fact that CBCCO only takes slightly longer time than
DCC and CCAS implies that although the time complexity
of solution generation in CBCCO is higher than in CCAS or
DCC, the solution evaluations really occupy a big proportion
of the time consumption.

Generally, although CBCCO is not the fastest algorithm
within all the tested algorithms, its execution time is only
slightly longer than the best ones. Considering the advantage
of CBCCO over other algorithms in the comparison of the
objective value, we can make the conclusion that CBCCO
is both effective and efficient in dealing with large-scale
overlapping problems.

IV. COMPARISON OF BEST VALUE

The best objective values of the results of each compared
algorithm among the 30 independent executions are shown in
Table C corresponding to Table IV of the paper. Also, the
best values of CBCCO2 on f9 to f12 are shown in Table D
corresponding to Table V of the paper.

From Table C and Table D,we can see that the best results
show the same overall pattern as the mean and standard
deviation results in Table IV and Table V of the main paper.
CBCCO achieved better results than the other algorithms on
f1 to f8 and CSO achieved better results on f9 to f12. When
we adjusted the parameter of the applied optimizer CMA-ES,

TABLE D
COMPARISON OF THE BEST VALUE OF CSO, LLSO, AND CBCCO2 ON f9

TO f12 .

Func. CSO LLSO CBCCO2
f9 1.60E+06 2.49E+06 1.93E+06
f10 4.33E+07 5.31E+07 3.21E+07
f11 4.17E+06 5.47E+06 3.34E+06
f12 6.90E+07 8.60E+07 6.21E+07

CBCCO2 achieved better results than CSO as shown in Table
D. Thus, this comparison also demonstrates that CBCCO is
very good even using the best value as the measurement of
performance.
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